2,672 research outputs found

    All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas

    Full text link
    We develop an all-electron path integral Monte Carlo (PIMC) method with free-particle nodes for warm dense matter and apply it to water and carbon plasmas. We thereby extend PIMC studies beyond hydrogen and helium to elements with core electrons. PIMC pressures, internal energies, and pair-correlation functions compare well with density functional theory molecular dynamics (DFT-MD) at temperatures of (2.5-7.5)×105\times10^5 K and both methods together form a coherent equation of state (EOS) over a density-temperature range of 3--12 g/cm3^3 and 104^4--109^9 K

    Inclination-Independent Galaxy Classification

    Full text link
    We present a new method to classify galaxies from large surveys like the Sloan Digital Sky Survey using inclination-corrected concentration, inclination-corrected location on the color-magnitude diagram, and apparent axis ratio. Explicitly accounting for inclination tightens the distribution of each of these parameters and enables simple boundaries to be drawn that delineate three different galaxy populations: Early-type galaxies, which are red, highly concentrated, and round; Late-type galaxies, which are blue, have low concentrations, and are disk dominated; and Intermediate-type galaxies, which are red, have intermediate concentrations, and have disks. We have validated our method by comparing to visual classifications of high-quality imaging data from the Millennium Galaxy Catalogue. The inclination correction is crucial to unveiling the previously unrecognized Intermediate class. Intermediate-type galaxies, roughly corresponding to lenticulars and early spirals, lie on the red sequence. The red sequence is therefore composed of two distinct morphological types, suggesting that there are two distinct mechanisms for transiting to the red sequence. We propose that Intermediate-type galaxies are those that have lost their cold gas via strangulation, while Early-type galaxies are those that have experienced a major merger that either consumed their cold gas, or whose merger progenitors were already devoid of cold gas (the ``dry merger'' scenario).Comment: Accepted for publication in ApJ. 7 pages in emulateap

    The supermassive black hole mass - S\'ersic index relations for bulges and elliptical galaxies

    Full text link
    Scaling relations between supermassive black hole mass, M_BH, and host galaxy properties are a powerful instrument for studying their coevolution. A complete picture involving all of the black hole scaling relations, in which each relation is consistent with the others, is necessary to fully understand the black hole-galaxy connection. The relation between M_BH and the central light concentration of the surrounding bulge, quantified by the S\'ersic index n, may be one of the simplest and strongest such relations, requiring only uncalibrated galaxy images. We have conducted a census of literature S\'ersic index measurements for a sample of 54 local galaxies with directly measured M_BH values. We find a clear M_BH - n relation, despite an appreciable level of scatter due to the heterogeneity of the data. Given the current M_BH - L_sph and the L_sph - n relations, we have additionally derived the expected M_BH - n relations, which are marginally consistent at the 2 sigma level with the observed relations. Elliptical galaxies and the bulges of disc galaxies are each expected to follow two distinct bent M_BH - n relations due to the S\'ersic/core-S\'ersic divide. For the same central light concentration, we predict that M_BH in the S\'ersic bulges of disc galaxies are an order magnitude higher than in S\'ersic elliptical galaxies if they follow the same M_BH - L_sph relation.Comment: 12 pages, 6 figures, 5 tables, accepted for publication in MNRA

    Phase transformation in Si from semiconducting diamond to metallic beta-Sn phase in QMC and DFT under hydrostatic and anisotropic stress

    Get PDF
    Silicon undergoes a phase transition from the semiconducting diamond phase to the metallic beta-Sn phase under pressure. We use quantum Monte Carlo calculations to predict the transformation pressure and compare the results to density functional calculations employing the LDA, PBE, PW91, WC, AM05, PBEsol and HSE06 exchange-correlation functionals. Diffusion Monte Carlo predicts a transition pressure of 14.0 +- 1.0 GPa slightly above the experimentally observed transition pressure range of 11.3 to 12.6 GPa. The HSE06 hybrid functional predicts a transition pressure of 12.4 GPa in excellent agreement with experiments. Exchange-correlation functionals using the local-density approximation and generalized-gradient approximations result in transition pressures ranging from 3.5 to 10.0 GPa, well below the experimental values. The transition pressure is sensitive to stress anisotropy. Anisotropy in the stress along any of the cubic axes of the diamond phase of silicon lowers the equilibrium transition pressure and may explain the discrepancy between the various experimental values as well as the small overestimate of the quantum Monte Carlo transition pressure

    Strong asymptotics for Jacobi polynomials with varying nonstandard parameters

    Get PDF
    Strong asymptotics on the whole complex plane of a sequence of monic Jacobi polynomials Pn(αn,βn)P_n^{(\alpha_n, \beta_n)} is studied, assuming that limnαnn=A,limnβnn=B, \lim_{n\to\infty} \frac{\alpha_n}{n}=A, \qquad \lim_{n\to\infty} \frac{\beta _n}{n}=B, with AA and BB satisfying A>1 A > -1, B>1 B>-1, A+B<1A+B < -1. The asymptotic analysis is based on the non-Hermitian orthogonality of these polynomials, and uses the Deift/Zhou steepest descent analysis for matrix Riemann-Hilbert problems. As a corollary, asymptotic zero behavior is derived. We show that in a generic case the zeros distribute on the set of critical trajectories Γ\Gamma of a certain quadratic differential according to the equilibrium measure on Γ\Gamma in an external field. However, when either αn\alpha_n, βn\beta_n or αn+βn\alpha_n+\beta_n are geometrically close to Z\Z, part of the zeros accumulate along a different trajectory of the same quadratic differential.Comment: 31 pages, 12 figures. Some references added. To appear in Journal D'Analyse Mathematiqu

    Morphological number-count and redshift distributions to I < 26 from the Hubble Deep Field: Implications for the evolution of Ellipticals, Spirals and Irregulars

    Get PDF
    We combine the photometric redshift data of Fernandez-Soto et al. (1997) with the morphological data of Odewahn et al. (1996) for all galaxies with I < 26.0 detected in the Hubble Deep Field. From this combined catalog we generate the morphological galaxy number-counts and corresponding redshift distributions and compare these to the predictions of high normalization zero- and passive- evolution models. From this comparison we conclude the following: (1) E/S0s are seen in numbers and over a redshift range consistent with zero- or minimal passive- evolution to I = 24. Beyond this limit fewer E/S0s are observed than predicted implying a net negative evolutionary process --- luminosity dimming, disassembly or masking by dust --- at I > 24. (2) Spiral galaxies are present in numbers consistent with zero- evolution predictions to I = 22. Beyond this magnitude some net- positive evolution is required. Although the number-counts are consistent with the passive-evolution predictions to I=26.0 the redshift distributions favor number AND luminosity evolution. (3) There is no obvious explanation for the late-type/irregular class and this category requires further subdivision. While a small fraction of the population lies at low redshift (i.e. true irregulars), the majority lie at redshifts, 1 < z < 3. At z > 1.5 mergers are frequent and, taken in conjunction with the absence of normal spirals at z > 2, the logical inference is that they represent the progenitors of normal spirals forming via hierarchical merging.Comment: Accepted for publication in ApJ Letters, colour plates available from http://www.phys.unsw.edu.au/~spd/bib.htm
    corecore